Сборник трудов Институт математики СО АН СССР

1966 г.

Выпуск 7

О МАТЕМАТИЧЕСКИХ ПРИНЦИПАХ КЛАССИФИКАЦИИ ПРЕДМЕТОВ И ЯВЛЕНИЙ

А.Н.Дмитриев, Ю.И.Журавлев, Ф.П.Кренделев

Существует класс задач, в которых необходимо по ряду известных признаков предмета или явления установить, обладает ли данное явление или предмет некоторым свойством.

Так, в химии важной является задача прогноза — обладает ли данное соединение свойствами катализатора, в диагностике по ряду признаков важно установить — какой болезнью болен паци — ент и т.д.

В настоящей статье мы введем меру, оценивающую важность данного признака при изучении группы предметов или явлений. На основе введенной меры могут быть предложены способы классифи-кации объектов, обладающих данным признаком, и способы отнесения нового объекта к одной из ранее изученных групп.

§ I. Допустимые таблицы

Пусть задано конечное множество $M = \{ \vec{x}_1, \vec{x}_2, ..., \vec{\alpha}_K \}$, ко торое в дальнейшем мы будем называть основным множеством, и на элементах M определены предикаты (свойства) $x_1, x_2, ..., x_n, x_{n+1}$.

Предикат x_{n+1} назовем основным, предикаты x_1, \dots, x_n -

вспомогательными. В дальнейшем вспомогательные предикаты мы будем, если это не приводит к недоразумениям, называть просто предикатами.

Рассмотрим строки $\langle x_1(\widetilde{\alpha}_i), x_2(\widetilde{\alpha}_i), ..., x_n(\widetilde{\alpha}_i) \rangle$ значений вспомогательных предмкатов на предмете $\widetilde{\alpha}_i$ $= 1, 2, ..., K_*$.

Каждую строку $S_i = \langle x, (\widetilde{\alpha_i}), x_2(\widetilde{\alpha_i}), ..., x_R(\widetilde{\alpha_i}) \rangle$ сопоставим с множеством строк $\mathcal{M}(\widetilde{\alpha_i})$, которое составлено из всех строк, получающихся из S_i всевозможными заменами координат строки S_i на знак "—".

ОПРЕДЕЛЕНИЕ I. Элементы множества $M(\widetilde{\alpha}_i)$ назовем э т а - л о н а м и (образами) предмета $\widetilde{\alpha}_i$, $i=1,2,\ldots,\kappa$.

ОПРЕДЕЛЕНИЕ 2. Таблица T , заполенная символами $\{\mathcal{O}_{\mathcal{A}_{r}}^{-}\}$,

называется допустимой, если

I°. Cymectbyet whomectbo \widetilde{M} , $\widetilde{M} \in M$, $\widetilde{M} = (\widetilde{\alpha}_{i,1},...,\widetilde{\alpha}_{i,2})$ takes, что каждая строка из T является элементом одного и только одного множества $M(\widetilde{\alpha}_{i,j})$, $1 \le j \le \tau$, то есть эталоном одного и только одного предмета из \widetilde{M} .

 2^{0} . Все строки таблицы $T = \{\alpha_{ij}\}$ различны. Две строки S_{i} и S_{j} таблицы T называются различными, если существует столбец — номер столбца обозначим через ℓ — такой, что

a ie \{0,1}, a je \{0,1} \ n a ie \neq a je

ОПРЕДЕЛЕНИЕ 3. Таблица T называется до пустимой и, вроме того, на всех элементах \widetilde{M} (определение 2) предикат $x_{R+1}=1$.

В дальнейшем мы будем рассматривать только допустамые или допустамые в узком смысле таблийы.

§ 2. Различающая мера признака

Пусть задана допустимая таблица T , строки которой нв - ляются образами элементов из множества \widetilde{M} , $\widetilde{M} \subseteq M$, и для элементов множества \widetilde{M} вичислено значение основного предиката x_{n+1} . Тогда

 $\widetilde{M} = \widetilde{M}_{\bullet} U \widetilde{M}_{\bullet}, \ \widetilde{M}_{\bullet} \cap \widetilde{M}_{\bullet} = \emptyset$

пусто, где \widetilde{M}_1 — меожество, на элементах которого предикат $x_{n+1}=1$ (свойство x_{n+1} выполнено), \widetilde{M}_0 — множество , на элементах которого предикат $x_{n+1}=0$ (свойство x_{n+1} не винолнено).

. Разобъем табинцу T на две нодтаблици T_{\star} и T_{\circ} :

 T_2 составим из всех строк таблицы T , которые являются образами элементов из $\widetilde{\mathcal{M}}_2$; T_0 — из строк, которые являются образами элементов из $\widetilde{\mathcal{M}}_2$.

ОПРЕДЕЛЕНИЕ 4. Набор (i_1,\dots,i_t) столоцов таблицы T и соответствующий ему набор (x_{i_1},\dots,x_{i_t}) назовем тестором для (T_1,T_o) , если после удаления из T всех столоцов, не во — медших в число (i_1,\dots,i_t) , все строки таблицы T_1 будут различны со всеми строками таблицы T_o

ОПРЕДЕЛЕНИЕ 5. Тестор для (T_1,T_o) называется тупиковым, если после удаления из него любого столбца он перестает бить тестором для (T_1,T_o) .

ПРИМЕР І. Пусть

$$T = \begin{pmatrix} I & 2 & 3 & 4 & 5 \\ I & I & 0 & I & I \\ 0 & I & 0 & I & I \\ I & 0 & I & 0 & I \\ I & I & I & I & I \\ 0 & 0 & 0 & I & I \end{pmatrix}, T = \begin{pmatrix} I & I & 0 & I & I \\ 0 & I & 0 & I & 0 \\ I & 0 & I & 0 & I \end{pmatrix}, T_{o} = \begin{pmatrix} I & I & I & I & I \\ 0 & 0 & 0 & I & I \end{pmatrix}.$$

Набор столбцов за номерами 2 и 3 , соответственне (x_2,x_3) ,является тупиновым тестором для (T_1,T_o) . Действительно, после удаления из T столбцов с номерами I, 4, 5 таблица T_2 переходит в T_1 , T_0 в T_0 и

$$T'_{\mathbf{1}} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix}, \qquad T'_{\mathbf{0}} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

Все строки таблицы T_1' отличны от всех строк таблицы T_0' , следовательно, набор (x_2,x_3) является тестором для (T_1,T_0) . Тупиковость (x_2,x_3) очевидна.

Пусть κ — число тупиковых тесторов таблицы T отно — сительно (T_1,T_o) и κ_i — число тупиковых тесторов, в которые вомел столоец, соответствующий признаку x_i .

OПРЕДЕЛЕНИЕ 6. Число R $(\mathcal{X}_{L})=\frac{\kappa_{L}}{\kappa}$, i=1,2,...,n , на-

$$T = \begin{pmatrix} \frac{12345}{01010} \\ \frac{01010}{10111} \\ \frac{10110}{10001} \\ 01000 \\ 11110 \end{pmatrix}, T_{o} = \begin{pmatrix} \frac{12345}{01010} \\ \frac{10001}{01000} \\ \frac{11110}{01000} \end{pmatrix}.$$

Тупиковыми тесторами здесь являются наборы (I,2,4) и (2,3,4). Поэтому $R(x_1)=R(x_3)=\frac{1}{2}$, $R(x_2)=R(x_4)=1$, $R(x_5)=0$.

При исследовании предмета, для которого еще не вычислен основной признак (предикат) x_{n+1} , следует в первую оче редь выяснить — выполняются ли для этого предмета признаки с высоким разделяющим весом.

Вычисление разделяющего веса производится по значениям вспомогательных признаков на ранее изученных предметах, для которых значение основного признака \mathcal{Z}_{R+1} известно (или выяснено в предыдущих исследованиях).

§ 3. Алгоритмы вычисления различающего веса признаков

Первый алгоритм. Введем операцию АоВ под элементами множества { 0,1,-} при помощи таблицы:

Тогда $S_i \circ S_j$, где $S_i = (\alpha_1, \alpha_2, ..., \alpha_n)$, $S_j = (\beta_1, \beta_2, ..., \beta_n)$, $\alpha_i \in \{0, 1, -\}$, $\beta_i \in \{0, 1, -\}$, i = 1, 2, ..., n, определяется следующим образом:

$$S_i \circ S_j = (\alpha_1 \circ \beta_1, \alpha_2 \circ \beta_2, \dots, \alpha_n \circ \beta_n)$$

Пусть таблига T_4 состоит из строк $S_1, S_2, ..., S_\ell$. таблица T_o — из строк $\widetilde{S}_4, \widetilde{S}_2, ..., \widetilde{S}_m$.

Составим строки $S_{i,j}=S_i\circ S_j$, $\ell=1,2,...,\ell$, j=1,2,...,m. В строке $S_{i,j}$ выделим номера $\tau_i,...,\tau_q$ координат , равных едини-

це, и сопоставим S_{ij} с набором $\{x_{7_i},\dots,x_{7q}\}=\widetilde{x}_{ij}$. Рас — смотрим множество наборов $x=\{\widetilde{x}_{ij}\},i=1,2,\dots,m;j=1,2,\dots,\ell$.

Удалим из x все нобори \widetilde{x}_{ij} , для которых существуют набори \widetilde{x}_{ij} такие, что $\widetilde{x}_{ij} \in x_{ij}$. После такой операции иножество x перейдет в $x=\{\widetilde{x}_{ij}\}$.

Из множества S всех наборов, составленных из некото — рых букв x_1, \dots, x_n , удалим все поднаборы наборов из x'.

После такой операции S перейдет в S'. Оставим в S' только наборы, все сужения которых не входят в S'. Множество всех таких наборов образует множество \widetilde{T} всех тупиковых тесторов для (T_1,T_2) . Доказательство этого факта следует из построения. Имея \widetilde{T} , нетрудно построить различающие веса всех признаков $\mathcal{X}_{\mathcal{L}},\dots,\mathcal{X}_{\mathcal{L}}$.

ПРИМЕР 3. Рассмотрим таблицы T_4 и T_o из примера 2. Пусть $S_i=(0/0/0),\ S_2=(1/0/1/0),\ S_3=(1/0/1/0)$, $\widetilde{S}_4=(1/0/0/0)$, $\widetilde{S}_5=(1/1/0/0)$.

Torga $S_{ii} = (00100)$, $S_{i2} = (11101)$, $S_{i5} = (01011)$, $S_{2i} = (11001)$, $S_{2i} = (00001)$, $S_{33} = (10111)$, $S_{33} = (10111)$, $S_{33} = (10111)$

Наборы \widetilde{x}_{11} , \widetilde{x}_{21} , \widetilde{x}_{22} , \widetilde{x}_{25} , \widetilde{x}_{31} , \widetilde{x}_{32} удаляем, так нак они содержатся в более широких наборах. Например, $\widetilde{x}_{21} \subset \widetilde{x}_{12}$ Выписываем наборы, составленные из букв, содержащихся в ино - жестве $\langle x_1, x_2, x_3, x_4, x_5 \rangle$, и удалнем из них все поднаборы \widetilde{x}_{12} , \widetilde{x}_{33} , \widetilde{x}_{53} .

В результате выполнения такой операции остаются наборы:

$$(x_1, x_2, x_4)$$
, (x_2, x_3, x_4) , (x_1, x_2, x_3, x_4) , (x_1, x_2, x_4, x_5) , (x_2, x_3, x_4, x_5) , (x_2, x_3, x_4, x_5) .

Hs hux typherobne tectoph of pasyot (x_1,x_2,x_4) m (x_2,x_5,x_4) . Nostony $R(x_1)=\frac{1}{2}$, $R(x_2)=1$, $R(x_3)=\frac{1}{2}$, $R(x_4)=1$, $R(x_5)=0$.

 $i=1,2,\ldots,\ell$, $j=1,2,\ldots,m$, набори $\widetilde{x}_{ij}=\{x_1,\ldots,x_n\}$ \widetilde{x}_{ij} . Рассиотрим выражение:

 $\prod_{i=1}^{n} \prod_{i=1}^{m} (x_{ij}^{1} \vee ... \vee x_{ij}^{\kappa(i,j)}),$

здесь символы x_{ij}^{∞} рассматриваются как булевы переменные, V - знак дизъюнкции, 7 - знак конъюнкции. Полученное выраже - ние приведем к виду $\sum 7$ и выполним все упрощения типа:

 $A \lor A = A$, $A \lor A = A$. B peaysts -

тате имеем

$$\forall x_{i,j_1}^{\tau_i} \cdots x_{i_t j_t}^{\tau_t}. \tag{I}$$

Тогда все тупиковые тесторы для $(7,7_o)$ исчерпываются на - борами $(x_{i,j}^{z_i},\dots,x_{i+j+1}^{z_{i+j}})$, соответствующими слагаемим в(I).

Этот алгорити является незначительной модификацией алго-

ритма С.В. Яблонского [I] .

Третий алгорити. Задача построения всех тупиковых тесторов может быть сведена к задаче расшифровки[2] специальной монотонной функции.

Сопоставим набору $(x_{i_1},...,x_{i_K})$ вершину $\tilde{\alpha}=(\alpha_i,...,\alpha_n)$ n-1 мерного единичного куба, положив $\alpha_{i_1}=...=\alpha_{i_K}=1$ и остальные координаты равными нулю.

Зададим функцию $F_{T,T_o}(x_1,x_2,...,x_n)$: $f_{T,T_o}(\alpha,\alpha_2,...,\alpha_n) = \begin{cases} 1, & \text{если набор } (x_{i_1},...,x_{i_n}), & \text{сопостав-} \\ & \text{ленный вершине } (\alpha_i,...,\alpha_n), & \text{обра-} \\ & \text{зует тестор для } (T_1,T_o); \\ 0 & \text{- в противном случае.} \end{cases}$

Функция $F_{7,7,}(x_{0},...,x_{n})$ является монотонной. Это следует из очевидных утверждений:

 \mathbf{I}^0 , если набор $(x_{i_1},...,x_{i_K})$ есть тестор, то всякое расширение $(x_{i_1},...,x_{i_K})$ также образует тестор;

 2^0 . если набор (x_{i_1},\ldots,x_{i_K}) не является тестором, то сужение наборов (x_{i_1},\ldots,x_{i_K}) также не является тестором.

Очевидно, наборам, образующим тупиковые тесторы, соответ-

ствуют нижние единицы функции $F_{T,T_o}\left(x_1,\ldots,x_n
ight)$.

Построение нижних единиц монотонной функции $F_{7,7_0}$ можно проводить методом В.К.Коробкова [2].

§ 4. OTHECEHUE STANOHA K KRACCAM \widetilde{M}_{e} , \widetilde{M}_{e}

Пусть задани таблици T_{\perp} , T_{o} эталонов определенных предметов, у которых основной признак равен соответственно единице, нулю.

Задан допустимый эталон S , для которого значение основного признака неизвестно и внуисление этого значения затруд-

нено.

Тогда в ряде случаев для отнесения S к T_{4} или к T_{o} можно пользоваться следующей процедурой.

Пусть

$$T_{1} = \begin{pmatrix} \alpha_{11} \alpha_{12} \dots \alpha_{1n} \\ \alpha_{21} \alpha_{22} \dots \alpha_{2n} \\ \vdots \\ \alpha_{m1} \alpha_{m2} \dots \alpha_{mn} \end{pmatrix}, T_{0} = \begin{pmatrix} \beta_{11} \beta_{12} \dots \beta_{1n} \\ \beta_{21} \beta_{22} \dots \beta_{2n} \\ \vdots \\ \beta_{e1} \beta_{e2} \dots \beta_{en} \end{pmatrix}, S = (\gamma_{1}, \dots, \gamma_{n}).$$

Для наждого признака $x_1,...,x_n$ вычисляется разделяющий вес $R(x_i)$, $\mathcal{L}=1,2,...,n$.

Вичисляется значение величины:

$$\rho_{1} = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} (\alpha_{ij} \circ \gamma_{j})}{m}, \quad \rho_{2} = \frac{\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\beta_{ij} \circ \gamma_{j})}{\ell}.$$

Если ρ , ρ_2 , делается прогнов: основной признак для предмета, которому соответствует эталон S , не выполнен. Если ρ , ρ_2 , то делается прогнов: основной признак для предмета, которому соответствует эталон S , выполнен.

Области применимости и точность описанного метода будут исследовани в дальнейших публиканиях.

§ 5. Информационный вес признака

Пусть задана допустимая в узком смысле таблица T (см. определение 3), то есть на всех предметах, эталонами которых являются строки таблицы T, основное свойство \mathcal{L}_{R+1} выполнено.

При решении различных задач бывает необходимо расклассифицировать вспомогательные признаки $\mathcal{X}_{I_1}, \dots, \mathcal{X}_{I_2}$ по степени ценности их для изучения свойства \mathcal{X}_{I_2+1} , иными словами, необходимо установить последовательность выявления признаков для оценки явления.

Ниже мы введем меру ценности (информационный вес) при - знака $x_{\dot{\iota}}$.

ОПРЕДЕЛЕНИЕ 4'. Набор $(\mathcal{L}_1,\ldots,\mathcal{L}_\ell)$, соответственно $(\mathcal{X}_{\mathcal{L}_1},\ldots,\mathcal{X}_{\mathcal{L}_\ell})$, называется тестом таблицы \mathcal{T} , если после удаления из \mathcal{T} всех столбцов, за исключением $(\mathcal{L}_1,\ldots,\mathcal{L}_\ell)$, получается таблица, все строки которой различны.

ОПРЕДЕЛЕНИЕ 5. Тест $(\dot{c}_1,...,\dot{c}_\ell)$, соответственно $(x_{\dot{c}_1},...,x_{\dot{c}\ell})$, называется тупиковым для таблицы 7, если из него нельзя уда – лить ни одного столоца без того, чтобы он перестал быть тестом.

Понятие "тест" впервые было введено С.В.Яблонским в связи с изучением методов контроля электрических схем [1].

Пусть κ — число тупиковых тестов таблицы 7 , κ_{c} — число тупиковых тестов таблицы 7 , в которое входит столбец, соответствующий признаку (предикату) x_{c} .

ОПРЕДЕЛЕНИЕ 7. Число $\rho(i) = \frac{\kappa_L}{\kappa}$ называется информа — ционным весом признака x_i , $i = 1, 2, \ldots$, n .

Величина $\rho(i)$ оценивает важность признака \mathcal{Z}_i при изуче нии неления, описываемого основным предикатом \mathcal{X}_{R+1} . Если расположить признаки \mathcal{Z}_i , i=1,2,...,R, в последователь ность по убыванию $\rho(i)$, то признаки, получившие меньший номер, оказываются более важными при изучении предметов, обладающих свойством \mathcal{X}_{R+1} .

При исследовании конкретных таблиц 7, описывающих естественнонаучные эксперименты, обычно оказывается, что признаки распадаются по значениям $\rho(i)$ на группы, причем колебание между группами величины $\rho(i)$ велико по сравнению с колебанием внутри группы. Таким образом, признаки по информационной ценности часто распадаются на четко очерченые ранги. Признаки первого ранга оказываются наиболее существенными при изучении предметов, обладающих свойством \mathcal{X}_{R+1} , второго ранга — менее существенными и т.д.

ЗАМЕЧАНИЕ. Таблицы, рассматриваемые в данном параграфе, донжны обладать еще одним свойством; в каждом столбце таблицы имеется котя бы один элемент, равный нулю, и котя бы один элемент, равный единице.

ПРИМЕР 4. (илиострированный). В качестве основного мно - жества M рассматривается совокупность книг. Основной признак: книга $\mathcal X$ является книгой для детей.

Вспомогательные признаки:

 $x_{i}(\widetilde{\alpha})-\widetilde{\alpha}$ набрана крупным прифтом ;

 $\mathfrak{A}_{\mathfrak{p}}(\widetilde{\mathfrak{A}})$ — в $\widetilde{\mathfrak{A}}$ много иллюстраций ;

 $x_{\mathfrak{Z}}(\tilde{\mathfrak{Z}})$ — $\tilde{\mathfrak{Z}}$ издана на хорошей бумаге ;

 $x_4(\tilde{\lambda})$ — в $\tilde{\lambda}$ помещено хотя бы одно стихотворение ;

 $x_{5}(\mathfrak{A})$ — сюмет \mathfrak{A} не представляет собой единого целого.

Рассматривается множество М, состоящее из пести книг

для детей (на элементах M основной предикат выполнен). Таблица $\mathcal T$ соответствующих эталонов:

	x	1 2	22	3 X	4 X	5
Sı	I	0	0	I	I	
S2	I	I	0	I	I	
S3	I	0	I	I	0	
84	I	I	I	0	0	
85	0	I	I	0	I	
Se	0	I	I	I	0	

Тупиковые тесты таблины 7:

 $\langle x_1, x_2, x_5 \rangle$, $\langle x_2, x_4, x_5 \rangle$, $\langle x_1, x_2, x_3, x_4 \rangle$. Откуда получаем возможность вычислить $\rho(i)$: $\rho(1) = \frac{1}{2} \frac{1}{3} \rho(2) = 1, \quad \rho(3) = \frac{1}{3}, \quad \rho(4) = \frac{12}{23}, \quad \rho(5) = \frac{1}{3}$

Наиболее важным для характеристики свойства книги быть детской оказывается признак $\mathcal{X}_2(\mathcal{X})$ в \mathcal{X} много иллюстраций, наименее важным — признак $\mathcal{X}_3(\mathcal{X})$, характеризующий качество бумаги в \mathcal{X} . По значениям $\mathcal{P}(\mathcal{U})$ признаки распадаются на три группы:

$$\{x_2\}$$
 - группа первого ранга, $\rho(2) = 1$; $\{x_1, x_4, x_5\}$ - группа второго ранга, $\rho(1) = \rho(4) = \rho(5)$; $\{x_3\}$ - группа третьего ранга, $\rho(3) = \frac{1}{2}$.

ПРИМЕР 5. При решении задачи, возникшей в одной из областей естествознания, была получена группа семи эталонов, для которых основной признак (принадлежность к определенному ти — пу) был выполнев. Рассматривались вспомогательные признаки : $x_1, x_2, \ldots, x_{/2}$.

Таблица 7 эталонов имеет следующий вид:

x_{i}	T2	α_3	24	x_5	x_6	\mathcal{X}_{7}	x_{g}	x_g	240	$x_{\prime\prime}$	x_{i}	2013	24	x_{i}	x_{ll}	x_{i}
													I			-
I	0	0	I	0	0	I	I	0	I	I	0	I	I			0
0	0	I	0	0	0	I	I	0	I	I	0	I	I	0	I	I
0				0								I	I	I	Ι	_
I	0	0	0	0	0	I	I	0	0	0	I	I	0	I	I	-
0				0							I	0			ī	
I											Ι		0	Т	T	_

Оказалось, что таблица 7 характеризуется 406 тупиковнии тестами, для которых вычислено:

246	x_{\neq}	x_{B}	\mathcal{X}_2	24	x_1	214	x_{17}	x_6	245	x_3
374	334	322	316	256	250	243	242	228	225	211
097	087	083	082	066	065	063	063	059	058	054
x5	X12	X10	$x_{\prime\prime}$	x_{g}	x_g					-
155	153	152	151	ISI	II9				1-7,1	
040	040	039	039	032	030					
	374 097 x ₅ 155	374 384 097 087 x_5 x_{12} 155 153	874 384 322 097 087 083 \$x_5 \chi_{12} \chi_{10} 155 153 152	874 884 822 816 097 087 083 082 \$x_5 x_{10} x_{11}\$ 155 153 152 151	374 384 322 316 256 097 087 083 082 066 \$x_5 \chi_{12} \chi_{10} \chi_{11} \chi_{2} \chi_{12} \text{155 153 152 151 121}	874 884 822 816 256 250	374 334 322 316 256 250 243 097 087 083 082 066 065 063 \$x_5 x_{12} x_{10} x_{11} x_8 x_9 155 153 152 151 121 119	374 384 322 816 256 250 243 242 097 087 083 082 066 065 063 063 \$x_5 x_{12} x_{10} x_{11} x_8 x_9 155 153 152 151 121 119	374 384 322 316 256 250 243 242 228 097 087 083 082 066 065 063 063 059 \$x_5 x_{12} x_{10} x_{11} x_8 x_9 155 153 152 151 121 119	374 384 322 316 256 250 243 242 228 225 097 087 083 082 066 065 063 063 059 058 \$x_5 x_{12} x_{10} x_1 x_8 x_9\$ 155 153 152 151 121 119

Таким образом, признаки распались на группы:

Оказалось, что упорядоченность признаков по убыванию ин — формационного веса соответствует упоридоченности по важности (в содержательном смысле).

Так, признаки x_{16} , x_7 , x_{13} , x_2 наиболее характерны для данного типа эталонов.

§ 6. Вычисление информационного веса признака

Вычисление информационного веса $\rho(i)$ сводится к построе - нию всех тупиковых тестов таблицы эталонов $\mathcal T$.

Алгоритмы выделения всех тупиковых тестов имеют ту же природу, что и алгоритмы синтеза всех тупиковых тесторов для(7,7), описанные в \S 3.

Рассмотрим аналоги второго и третьего алгоритмов из § 3. I) Алгоритм С.В. Яблонского.

Пусть таблица T состоит из строк $S_1,S_2,...,S_{t}$.Для каж — дой нары $\hat{\iota},\hat{j}$, $\hat{\iota}\neq j$, составляем строку $S_{\hat{\iota}\hat{j}}=S_{\hat{\iota}}\circ S_{\hat{j}}$ и выделя-

ем набор x_{ij} переменных x'_{ij} , ..., x''_{ij} , для которых со - ответствующая координата в S_{ij} равна нулю.

Рассматривая символы $\alpha_{i,j}^{\mathcal{R}}$ как булевы переменные, при - водим (2) к виду $\sum \Pi$ и производим все упрощения $A \cdot A = A$, $A \lor A = A$, $A \lor A \cdot B = A$. Пусть (2) переходит в

$$Vx'_{i,j}, \dots x^{\tau}_{i,j}. \tag{3}$$

Каждому слагаемому в (3) соответствует тупиковый тест $(x'_{i,j_1},\ldots,x'_{i,j_{2}})$, и все тупиковые тесты получаются таким образом.

2) Сведение синтеза всех тупиковых тесторов к задаче расшифровки монотонной функции. Сопоставим набору $(x_{\ell_1}, \dots, x_{\ell_K})$ вершину $\widetilde{\alpha} = (\alpha_{\ell_1}, \dots, \alpha_{\ell_K})$, положив $\alpha_{\ell_1} = \dots = \alpha_{\ell_K} = 1$ и остальные координаты равными нулю.

Вададим функцию $f_{\mathcal{T}}\left(x_{l},...,x_{\mathcal{R}}
ight)$.

$$f_{\mathcal{T}}(\alpha_1,...,\alpha_n) =$$

$$\begin{cases} / , & \text{если набор } (x_{i_1},...,x_{i_k}), & \text{сопостав-} \\ & \text{ленный вершине } (\alpha_1,...,\alpha_n), & \text{об-} \\ & \text{разует тест для } \mathcal{T}; \\ O - \text{в противном случае}. \end{cases}$$

Тогда функция $f_T(x_1,x_2,x_3,x_4)$ несущественно зависит от переменной x_3 ;

$$f_{7}(x_{1},x_{2},x_{3},x_{4})=\varphi(x_{1},x_{2},x_{4})=x_{1}\cdot x_{2}\vee x_{1}\cdot x_{4}$$

§ 7. Информационный вес эталона (строки)

Пусть информационный вес вспомогательных предикатов оказался равным $\rho(l), \ldots, \rho(n)$. Рассмотрим произвольный эталон \mathcal{S} (строку таблицы \mathcal{T}). Пусть в строке \mathcal{S} на местах $\dot{c}_1,\ldots,\dot{c}_{\ell}$ стоят единицы, на местах $\dot{f}_2,\ldots,\dot{f}_{\ell}$ — прочерки. Обозначим через \mathcal{Q}_{i}^{t} число элементов, отличных от прочерка, в стоябце \dot{f}_{t} , $t=1,2,\ldots,\mathcal{T}$; че — рез \mathcal{Q}_{i}^{t} — число элементов (равных единице) в стоябце \dot{f}_{t} , $t=1,2,\ldots,\mathcal{T}$; че —

Обозначим:

$$\frac{\widetilde{q}_{i}^{t}}{q_{i}^{t}} = q(i_{t}), t = 1, 2, \dots, \tau.$$

$$\sum_{i=1}^{n} \rho(i) = \rho.$$

ОПРЕДЕЛЕНИЕ 8. Величина $\mathcal{I}(s) = \frac{1}{P} \left(\sum_{t=1}^{L} p(i_j) + \sum_{t=1}^{L} q(j_t) \cdot p(j_t)\right)$ называется информационным весом эталона s.

Если число вталонов в таблице T невелико, вместо величины S(S) можно рассматривать более грубую жарактеристику:

$$\widetilde{\mathcal{I}}(s) = \frac{1}{\rho} \left(\sum_{i=1}^{e} \rho(i_i) + \frac{1}{2} \sum_{t=1}^{e} \rho(j_t) \right).$$

В приложениях часто возникают задачи классификации эта — лонов (предметов), для которых выполнен предикат $\mathcal{X}_{\mathcal{R}+1}$ по сте — лени проявления свойства $\mathcal{X}_{\mathcal{R}+1}$ (степени активности веще — ства, степени опасности данной инфекции и т.д.).

Оказалось, что в ряде задач упорядоченность предметов по убыванию величины $\mathcal{I}(S)$ совпадает (или сильно коррелирована) с упорядоченностью по степени проявления свойства \mathcal{X}_{R+1} . Таким образом, значения $\mathcal{I}(S)$ могут послужить основой для по строения классифинации предметов или явлений по степени про явления свойства \mathcal{X}_{R+1} .

ПРИМЕР 7. В таблице примера 4 имеем:

$$\begin{split} \rho &= \frac{47}{6}; \quad \Im(s_{1}) = \frac{6}{7} \left(\rho(1) + \rho(4) + \rho(5) \right) = \frac{g}{77}; \quad \Im(s_{2}) = \frac{45}{77}; \\ \Im(s_{3}) &= \frac{8}{77}; \quad \Im(s_{4}) = \Im(s_{5}) = \Im(s_{6}) = \frac{41}{77}. \end{split}$$

Таним образом, среди книг, эталонами которых являются S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , наиболее типичная датская книга пред ставлена эталоном S_6 .

Характеристика 🗦 : книга набрана крупным шрифтом, в ней

Литература

- И.А. Чегис, С.В. Яблонский. Логические способы контроля электрических схем. - Труды Математического института им. В.А. Стеклова, 1958, т. 51. стр. 270-- 360.
- 2. В.К.Коробков. О монотонных функциях алгебры логики. Проблемы кибернетики, 1965, вып. 13, стр. 5.

Поступила в редакцию 8.IV.1966 г.