АКАДЕМИЯ НАУК СССР

СИБИРСКОЕ ОТДЕЛЕНИЕ

ГЕОЛОГИЯ И ГЕОФИЗИКА

No 11

1968

КРАТКИЕ И ПРЕДВАРИТЕЛЬНЫЕ СООБЩЕНИЯ

УДК 681.142.1.01 + 553.062/067

А. Н. ДМИТРИЕВ, Ю. Р. ВАСИЛЬЕВ, В. В. ЗОЛОТУХИН

ЛОГИКО-МАТЕМАТИЧЕСКАЯ ОБРАБОТКА ИНФОРМАЦИИ ПРИ ВЫЯВЛЕНИИ ПЕРСПЕКТИВНОСТИ СУЛЬФИДНОГО ОРУДЕНЕНИЯ В НЕКОТОРЫХ ТРАППОВЫХ ИНТРУЗИЯХ СЕВЕРА СИБИРСКОЙ ПЛАТФОРМЫ

В настоящей статье изложены результаты работы по применению метода логико-математической обработки информации по дифференци-

рованным трапповым интрузиям Сибирской платформы.

На первом этапе [4] дифференцированные трапповые интрузии северо-запада Сибирской платформы, обладающие целым рядом сходных характеристических признаков (петрохимических, минералогических, геолого-структурных и т. п.), но различающихся между собой масштабами оруденения, были подразделены на два подтипа: подтип А—«месторождения» и подтип Б— «рудопроявления». Для каждого подтипа, как и для типа в целом, был выявлен комплект характеристических признаков, располагающихся в определенной последовательности, установленной по убыванию значений информационных весов (в терминах задач распознания объектов).

По мнению исследователей, дифференцированные трапповые интрузии, перспективные на медно-никелевое оруденение, были обнаружены в ряде областей Сибирской платформы. Судя по литературным данным [1, 7, 8, 9], эти интрузии имеют как черты сходства, так и определенные различия (касающиеся их внутреннего строения, минералогических и петрохимических особенностей) с подобными массивами Норильского района.

Сравнить эти интрузии с изученными нами ранее [4, 5, 6] представлялось возможным только при наличии необходимой информации того же уровня, что и для интрузий северо-запада Сибирской платформы. Такую информацию пока удалось собрать лишь для ряда дифференцированных интрузий восточного борта Тунгусской синеклизы*.

Здесь, тяготея к Вилюйско-Котуйской зоне глубинных разломов, располагаются дифференцированные интрузии, восемь из которых (Нинимская, Нижне-Томбинская, Улахан-Вавинская, Лево-Нижне-Вилюй-канская, Вавуканская, Верхне-Томбинская, Хукочар, Велинга) охарактеризованы необходимым набором признаков, закодированных в следующем абзаце в соответствии с методом исследования [2, 3] в общую таблицу признаков (табл. 1).

^{*} Часть информации получена по литературным данным [1, 7, 8]. Необходимая дополнительная информация была любезпо предоставлена нам А. М. Виленским.

x_n признаки, $n=31$ Интрузня	Индекс	X_{1}	X_2	X_3	X_4	X_5	X_6	X_7	X_8	Χ ₉	X ₁₀	$X_{\rm H}$	X ₁₂
Нинимская	П	0	0	1	1	0	1	0	1	1	0	1	1
Нижне-Томбин- ская Улакан-Вавинская	Π_2 Π_3	0	0	1 1	1 1	1 0	0 0	1 1	1 1	1 0	0	0	0 0
.Пево-Нижне-Ви- люканская Вавуканская	Π_4 Π_5	0	0	1	1	0	0 0	1	1	0	0	0	0 0
Верхне-Томбин- ская Хукочар Велинга	Π_6 Π_7 Π_8	0 0 0	0 0 0	1 1 1	1 1 1	1 1 1	0 0 0	1 1 1	1 1 1	1 1 1	0 0 -	1 0 1	1 0 1

Следует отметить, что интрузии восточного борта Тунгусской синеклизы, как и вновь открытые в других районах Сибирской платформы, исследованы не так детально, как многие рудоносные интрузии Норильского района. Поэтому объективная оценка их перспективности на данном этапе изученности представляется нам своевременной и экономически важной задачей.

Таблица различающих и отождествляющих признаков

м	z								-				Разл	ичающі	ие
проом, эталоны	Признаки	$X_{\mathfrak{t}}$	X_3	X_5	X ₆	X,	X ₉	X_{i1}	X 12	X_{13}	X 16	X ₁₇	X_{18}	X_{21}	X ₂₂
Проом	$\begin{array}{ c c c }\hline\Pi_1 & \Pi_2 & \\ \Pi_3 & \Pi_4 & \\ \Pi_5 & \Pi_6 & \\ \Pi_7 & \\ \Pi_8 & \end{array}$	1 0 0 0 0 0 0 0	1 1 1 1 0 1 1 1	0 1 0 0 0 1 1	1 0 0 0 0 0 0	0 0 1 1 1 1 1	1 0 0 0 1 1	1 0 0 0 0 1 0	1 0 0 0 0 1 0	1 0 0 0 0 1 0	0 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 0 0 0 0 1 1	0 1 0 0 0 1 1	0 0 1 0 0 1 0
	Pa	0.164	1,000	0,221	0,164	0.203	0,302	0.201	0,201	0,209	0.301	0,290	0,278	0,206	0,31
Tanombi	$\begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \end{bmatrix}$	1 1 1 1 1 0	0 1 0 0 0 1	1 1 1 1 1 0	0 0 0 0 0 0	1 1 0 1 0	1 0 1 1 0 0	1 1 1 0 1 0	0 0 1 1 0 1	0 0 1 1 1 1 1	1 1 1 0 0 0	0 0 1 1 0 0	0 0 1 0 1 1	1 1 0 0 0	1 1 1 0 0 0
	X_n	X ₁	X ₄	X_6	X ₇	X ₁₃	X ₁₄	X_{18}	X ₂₀	X ₂₁	X ₂₃	X24	N ₂₅	X_{26}	X_{27}

3.0	X ₁₃	X ₁₄	X 15	X16	X ₁₇	X ₁₈	X_{19}	X ₂₀	X_{21}	X 22	X ₂₃	X ₂₄	X_{25}	X ₂₆	X ₂₇	X ₂₈	X 29	X ₃₀	X ₃₁
	1	0	1	0	0	1	0	0	0	0	1	0	0	0	0	1	0	1	1
	0	0	1	0	0	0	0	0	1 0	0	1	0	0 0	0	1	1 0	0 0	1 1	1 1
	0	0	1 1	0	0 0	0 0	0	0	0 0	0	0	1	0 0	0 0	0 0	1 1	0	1 1	1
	1 0	0	1	0	0	1 0	0 0	0	1	1 0	0	1 0	0	0 0	0	1 1	0	1 1	1 1
	0	0	1	1	1	0	0	0	0	0	0	0	1	0	0	1	0	1	1

Кодирование геологических сведений, обработка информации

В данной работе осуществлено сравнительное изучение рудоносных дифференцированных интрузий Норильского типа (эталоны)* с группой дифференцированных интрузий восточного борта Тунгусской синеклизы (пробы).

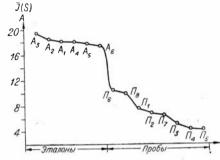

проб и эталонов (информация приведена к одному уровню)

Таблица 2

при					1	Отон	сдест	Э.В.Т.В.	шие	при	знакт	и			эталонов 14. и				
$X_{:3}$	X_{24}	X_{25}	X ₂₇	X ₂₈	\widetilde{I}	ĩ (S)		X ₁₀	X14	X ₁₉	X 20	X6	X 29	X4	X ₈	X ₁₅	Хэо	X ₈₁	\widetilde{I} (S) npo6 и этил no $P_{(i)}$ различ.
1 1 0 0 0 0	0 0 1 1 1 0 0	0 0 0 0 0 0 1 1	0 1 1 0 0 0 0	1 1 0 1 1 1 1	2, 2, 1, 0, 3, 2,	954 818 081 790 790 720 775 283	0 0 0 0 0 0 0	1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	7,8 6,8 5,0 4,2 4,2 10,9 6,5						
0	2 2 3	0,328 ,131 ,56 ,45 ,03 ,96	0,353	1 1 1	1 1 1	1 1 1	1 1 1 1 1	1 1 1 1	1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1 1	0 0 0 0	0 0 0 0	18,1 18,5 19,4 18,0
1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	17,9

^{*} Сравнение проводилось с подтипом A («месторождения»): A_1 — Норильск I, A_2 — Норильск II, A_3 — Талнах, A_4 — г. Черная, A_5 — Имаигда, A_6 — Накохоз.

Для восьми интрузий (проб) восточного борта составлен перечень признаков (см. табл. 1), тождественный таковому для группы эталонов, и с теми же порогами значений числовых величин при дискретном задании признаков [4]. Правила составления общего кода признаков были подробно изложены ранее [2]. Поэтому лишь напомним, что признаки (X_n) могут принимать значения: «0» — признак не выполнен (<, нет), «1» — признак выполнен (>, да), «—» — значение признака неизвестно. Признак называется сквозным, если столбец состоит только из значений «1» или «0». Различающие признаки это такие, которые имеют хотя бы одно значение «0» или «1» в столбце; отождествляющие (сквозные)

Упорядочение и сравнение информационных весов для эталонов и прсб.

признаки для всех строк имеют значение только «1» или только «0». Признаки объединены в группы [4].

Информационный вес P_i различающихся признаков [2], найденный для таблиц эталонов, был использован для определения значимости каждой пробы в исследуемом типе объектов (табл. 2). Детальное сравнение произведено по таблице эталонов (подтип «А» «месторождения») и по общему решению.

Сравнение проб с эталонами проводится по отождествляющим и раз-

личающим признакам. Набор отождествляющих признаков для подтипа Λ насчитывает 16 штук. Из них сквозными для эталонов и проб являются $\{X_{15}, X_{30}, X_{31}\}$; контрастными (для проб — «0», а для эталонов — «1» или наоборот) — $\{X_2, X_{10}, X_{19}, X_{29}, X_3, X_8\}$; пропорциональными — $\{X_5, X_9, X_{11}, X_{12}\}$; сходящимися — $\{X_{16}, X_{17}\}$.

С учетом значений P_i и условных весов* отождествляющих признаков произведена оценка информационного веса каждой пробы и их сравнение с эталонами. По данным информационного веса проб лучшим представителем среди проб (в сравнении с подтипом A) является Π_8 (Велинга), близко к ней стоит Π_6 (Верхне-Томбинская).

В целом пробы и эталоны сильно различаются по информационным весам (коэффициент разделения ρ =0,625), т. е. имеют значительный разрыв в последовательности значений \widetilde{I} (S). Это говорит о малой похожести проб на исследуемые эталоны (рисунок).

По информационным весам установлена значимость групп признаков в сравнении эталонов и проб. При этом выявлена следующая последовательность.

- I. Геолого-тектоническая обстановка $(\bar{P}_{(i)} = 0.252)$.
- II. Строение интрузий $\{\overline{P}_{(i)} = 0.216\}$.
- III. Минералогия $\{\bar{P}_{0} = 0.201\}$.
- IV. Петрохимия $\{\bar{P}_{(i)}=0,162\}$.

Сравнение проб по таблицам общего решения и далеких вариантов** приводит к тем же результатам, что и при сравнении с эталонами (см. табл. 2). Найденные средние значения информационных весов проб показывают, что пробы не имеют пересечения с эталонами по величине $\widetilde{I}(S)$ (см. рисунок).

^{*} Информационный вес отождествляющего признака (со значениями «1» для всех строк) называется условным весом.

^{**} Таблица рудопроявлений называется таблицей далеких вариантов, таблица месторождений — близких вариантов, а суммарная таблица называется общей.

Таким образом, осуществленная информационная ревизия интрузий восточного борта Тунгусской синеклизы на предмет установления их близости к норильскому типу интрузий показала, что:

- а) пробы имеют слабое родство с подтипом «месторождения» исследуемого типа, что указывает на отсутствие серьезной перспективы обнаружения месторождений норильского типа в районе восточного борта Тунгусской синеклизы;
- б) пробы имеют своеобразную специфику и при определенном расширении пространства признаков могут образовать новый (отличный •т Норильского) подтип;
- в) специфика проб заключается в том, что ряд существенных признаков для эталонов не выполняется для проб, т. е. в таблицу проб признаки входят со значением «0», а в таблицу эталонов «1».

При решении отдельной таблицы проб была получена последовательность объектов по I(S), эквивалентная последовательности, построенной по эталонам (см. табл. 2).

Геологическая интерпретация

Черты сходства и различия рудоносных интрузий Норильского района (подтип A) с исследуемой группой массивов восточного борта Тунгусской синеклизы отражены в таблице 2. Сравнение эталонов и проб по всей совокупности признаков прежде всего выявило сильную контрастность в отождествляющих признаках.

Оказалось, что для обеих групп интрузий характерна дифференцированность (X_{15}) , наличие ангидрит-гипсовых слоев в подстилающих породах (X_{30}) и связь с зонами глубинных разломов (X_{31}) . Но в отличие от эталонов пробам присущ невысокий процент магнезиальности нижних горизонтов (троктолитовых и оливин-биотитовых габбро-долеритов) MgO < 16,5% (X_2) , высокая их щелочность — $Na_2O + K_2O > 1.9\%$ (X_3) , отсутствие в них хромита (X_{10}) , горизонта пикритовых габбро-долеритов (X_{19}) и дифференцированных лав во вмещающих толщах кровли (X_{29}) .

Эталоны (см. табл. 2) имеют больше отождествляющих (сквозных) признаков со значением «1», чем пробы. Их сравнение также выявляет существенную контрастность признаков. В отличие от эталонов для проб характерна меньшая магнезиальность оливинов нижних — Fa>25% (X_3), кроме Π_5 — Вавуканская, и верхних — Fa>35% (X_4) — горизонтов; присутствие выделений магнетита, титаномагнетита (X_{11}) и сульфидной вкрапленности (X_{12}) только в некоторых интрузиях (Нинимская, Верхне-Томбинская, Велинга); для большинства массивов (проб) характерна меньшая степень дифференциации (X_{16}), отсутствие нижних такситовых габбро-долеритов (X_{17}), несколько иная форма тел (X_{22}).

Некоторые черты сходства и существенные контрастные признаки выявлены также при сравнении различающих признаков эталонов и проб. Сходство проявляется в том, что в разрезах тех и других интрузий иногда присутствуют верхние такситовые габбро-долериты (X_{18}) , наблюдаются различия в степени метаморфизма вмещающих пород (X_{21}) ; в зависимости от глубины формирования интрузии могут залегать среди различных пород стратиграфического разреза (X_{23}, X_{24}, X_{27}) . Но в отличие от интрузии подтипа A, для всех проб (за исключением Π_1 — Нинимская) характерен менее магнезиальный состав исходных магм — MgO < 9% (X_1) и более высокое содержание в них щелочей — $(Na_2O + Max)$

+ K_2 O) > 2.9 % (X_7); более кислый состав плагиоклазов нижних горизонтов — An < 76 % (X_6) и отсутствие сульфидной вкрапленности в верхних горизонтах интрузий (X_{13}).

Установленная контрастность существенных признаков проб и эталонов («месторождений») позволяет говорить о возможности выделения нового подтипа среди дифференцированных интрузий. От Норильского подтипа дифференцированных интрузий он отличается прежде всего такими важными генетическими чертами, как магнезиальность и щелочность исходных расплавов и нижних горизонтов интрузий, степень дифференциации, наличие пикритовых и нижних такситовых габбро-долеритов.

При упорядочении по информационным весам пробы расположились в конце общей последовательности после эталонных объектов.

Все это вместе взятое, а также выявленное слабое сродство проб к подтипу A, по-видимому обусловленное совпадением менее значимых признаков, свидетельствует о том, что в целом группа исследованных интрузий восточного борта малоперспективна на оруденение Норильского типа.

Упорядочение проб по информационным весам $\widetilde{I}(S)$ внутри группы дает тот же порядок чередования проб, что и при сравнении их с «месторождениями». Такая тождественность упорядочения (см. табл. 2) говорит о том, что при наличии необходимой информации с эталонами («месторождениями») может быть сравнен любой объект данного типа. Другими словами, для любой дифференцированной интрузии Сибирской платформы может быть дана оценка ее перспективности на оруденение норильского типа по информационному весу и выявленному сходству и различию наиболее существенных признаков с таковыми для эталонов.

Выводы

- 1. Среди дифференцированных интрузий севера Сибирской платформы исследованная группа дифференцированных интрузий восточного борта Тунгусской синеклизы образует самостоятельный подтип с присущими ему характерными и существенными признаками.
- 2. Всестороннее сравнение этой группы интрузий (проб) с подтипом A («месторождения») выявило их незначительную перспективность на оруденение норильского типа (что не исключает наличия оруденения иной природы).
- 3. Тождественность упорядочения проб по информационным весам внутри группы и при сравнении с подтипом A свидетельствует о возможности оценки перспективности любого (единичного) объекта данного типа.
- 4. Межрегиональное сравнение групп интрузий приводит к изменению ранее выявленного [4] порядка групп признаков. На первое место выходят общие для всех интрузий типа признаки геолого-тектонической обстановки, на второе группа признаков внутреннего строения интрузий. Группы минералогических и петрохимических признаков, подчеркивающие индивидуальность каждого массива, заняли соответственно третье и четвертое места.

Авторы глубоко признательны старшему научному сотруднику Института геологии ЯФ СО АН СССР А. М. Виленскому за предоставление дополнительной информации по группе интрузий.

JUTEPATYPA

- 1. В иленский А. М. Тектонический контроль трапповых интрузий Сибирской платформы. В сб. Геол. и петролог. интрузивных траппов Сиб. платф. М., «Наука». 1966.
- 2. Дмитриев А. Н., Кренделев Ф. П., Журавлев Ю. И. О математических принципах классификации предметов и явлений. Сб. Дискретный анализ, 1966, № 7.
- 3. Дмитриев А. Н. Некоторые табличные числа. Сб. Дискретный анализ, 1968. № 12. 4. Дмитриев А. Н., Золотухин В. В., Васильев Ю. Р. Опыт применения дискретной математической обработки информации по дифференцированным рудоносным трапповым интрузиям северо-запада Сибирской платформы. Сов. геол. 1968. № 12.
- 5. Золотухин В. В. Основные закономерности прототектоники и вопросы форми-
- рования рудоносных трапповых интрузий. М., «Наука», 1964.
 6. Золотухии В. В., Васильев Ю. Р. Особенности механизма образования рудоносных трапповых интрузий северо-запада Сибирской платформы. М., «Наука»,
- 7. Мащак М. С., Панкратов А. А., Пономаренко А. И. Дифференцировалная интрузия Велинга. Сб. Геол. и петрол. интрузивных траппов Сиб. платф. М., «Наука», 1966.
- 8. Павлов 11. Л. Структурно геологические особенности некоторых дифференцированных интрузий верховьев бассейнов рек Вилюя и Оленека. Сб. Геол. и петрол. интрузивных траппов Сиб. платф. М., «Наука», 1966.
- 9. Шахотько Л. И. Некоторые примеры тектонического контроля сульфидного оруденения. Тез. докл. к конф. Петрология траппов и связанное с ними оруденение. Л., НИИГА, 1965.

Инститит геологии и геофизики Сибирского отделения АН СССР, Новосибирск

Статья поступила в редакцию 7 июня 1967 г.